

OPEN POSSIBILITIES

Vertical Machining Center

MB-80V

MB-80V Large Vertical Machining Center [For Highly Accurate Applications]

Excellent productivity, high machining quality, ease of use
Achieving maximum reliability and floor space productivity with medium/large parts
From a continually evolving MB-V Series

Short cycle times with high cutting capacity

From roughing to high-quality finishing, highly efficient and large capacity machining can be completed on one machine.

Production lead times can be reduced with an ideal selection of spindles.

	Wide-range spindle	High-speed spindle	Power spindle
Spindle taper	No. 40	No. 40	No. 50
Spindle speed	15,000 min ⁻¹	20,000 min ⁻¹	12,000 min ⁻¹
Output	26 kW	30 kW	33 kW
Torque	199 N-m	57 N-m	302 N-m

Achieving highly accurate machining of medium and large-sized components

With a wide table and work envelope ideal for cutting large dies, molds and semiconductor manufacturing equipment.

Space-saving design provides best-in-class footprint productivity. [Floor space to work envelope]

Table size	1,600 × 800 mm
X-axis travel	1,600 mm
Y-axis travel	1,050 mm
Z-axis travel	600 mm
Required floor space	4,500 × 2,990 mm
Footprint productivity	0.13

Operator-friendly ease of use

Easy access to the spindle and table, and wide door opening makes it easy to set up large components. Handling a variety of hydraulic and pneumatic fixtures is also easy, and APC workflow reduction etc. allow for a more agile expansion of automation systems.

Outstanding chip discharge features reduce downtime for maintenance

The shielding, coolant, and chip conveyor are optimally designed for excellent chip discharge. The capacity to handle large amounts of aluminum chips also improves the machine operation rate and greatly reduces operator clean-up work.

Superb machining accuracy and predictive maintenance assure reliable long-term operation

Okuma's Thermo-Friendly Concept (accepting temperature changes) achieves outstanding dimensional accuracy stability over long runs, by minimizing dimensional variations due to fluctuating room temperatures and heat generated during cutting.

By predicting spindle and feed axis abnormalities with Al machine diagnostics, planned maintenance activities enhance the overall operation.

Highly efficient machining of die/mold and semiconductor manufacturing equipment parts

Cutting capacities 669 cm³/min / 704 cm³/min

• 12,000 min⁻¹ (No. 50) high power spindle (material: S45C) (Optional)

Tool	Spindle min ⁻¹	Cutting m/min	Feed rate mm/min	Width mm	Depth mm	Chips cm ³ /min
ø100 face mill 5 blades (carbide)	955	300	1,910	70	5	669
ø20 roughing end mill, 7 flutes (carbide)	4,000	251	9,520	20	3.7	704

• 15,000 min⁻¹ (No. 40) wide-range spindle (material: S45C)

Tool	Spindle min ⁻¹	Cutting m/min	Feed rate mm/min	Width mm	Depth mm	Chips cm³/min
ø100 face mill 5 blades (carbide)	955	300	1,429	70	4	400
ø50 insert drill	606	95	90.9	-	-	_
Тар M30P3.5	240	23	840	-	-	84% (Spindle load)

• 15,000 min⁻¹ (No. 40) wide-range spindle (material: A5052)

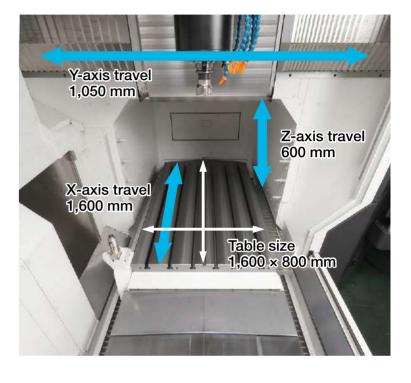
Tool	Spindle	Cutting	Feed rate	Width	Depth	Chips
	min ⁻¹	m/min	mm/min	mm	mm	cm³/min
ø63 face mill 5 blades (carbide)	15,000	2,969	8,523	44	4	1,500

Wide spindle lineup provides the right match for general machinery to die/mold and aluminum parts applications

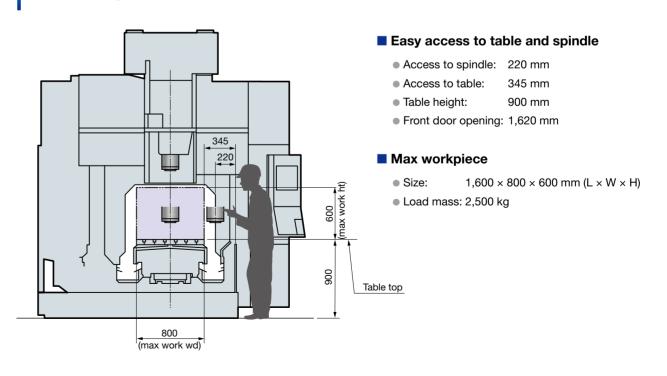
In addition to a highly versatile 12,000 min⁻¹ standard spindle, a 20,000 min⁻¹ high-speed spindle, and a 302 N-m No. 50 power spindle with roller bearings (Optional) are available.

■ Wide-range spindle High-speed spindle Power spindle (No. 40) (No. 40) (No. 40/50, roller bearings) Highly efficient general machine part Mainly for aluminum (Optional) Roughing and finish of dies & molds applications (Optional) Spindle speed: 15,000 min⁻¹ Spindle speed: 20,000 min⁻¹ Spindle speed: 12,000 min⁻¹ Max output: 33/26 kW (10 min/ cont) Max output: 26/18.5 kW (10 min/ cont) Max output: 30/22 kW (10 min/ cont) Max torque: 199/146 N-m (5 min/ cont) Max torque: 57/42 N-m (10 min/ cont) Max torque: 302/148 N-m (10% ED/cont) 1.000 22.5 kW (10%FD) 500 302 N-m (10%ED) 199 N-m (5 min) 15 kW (5 min) 26 kW (10 min) 18.5 kW (cont) 30 kW (10 mir 4.000 1.700 4.000 12.000 5,000 10,000 5.000 10.000

5


Wide Y-axis travel balanced with excellent workability

Ideal work envelope for medium and large-size parts machining


Y-axis travel: 1,050 mm

■ For medium and large parts, and large plastic mold manufacturing, with 800 mm table, and 1,050 mm Y-axis travel Best-in-class floor space productivity

X-axis travel: 1,600 mmY-axis travel: 1,050 mmTable size: 1,600 x 800 mm

Outstanding table and spindle access provide excellent workability


Delivering longer unattended operations

Large amounts of aluminum chips also cleanly removed

- Wide in-machine chip conveyor
- Crossrail shower system (Optional)
- In-machine vertical covers prevent chip accumulation

Wide in-machine hinged conveyors surround the table. Large chip volumes discharged smoothly

Crossrail shower system (Optional) removes chips from the workpiece and table

"Working with temperature changes"

Thermo-Friendly Concept

The "Thermo-friendly" concept enables remarkable machining accuracy through original structural design and thermal deformation control technology. If frees you from troublesome dimensional compensation and warm-up. Exhibits excellent dimensional stability even during consecutive operation over long periods and environmental temperature change in the plant.

MB-80V Thermal deformation over time: Room temperature change: 8°C | X axis | Y ax

- TAS-C: Thermo Active Stabilizer-Construction (Optional)

 "Proactively" keeps the machine [construction] in optimum, stable condition during shop environment temperature change-resulting in superb (stable) machining accuracies.
- TAS-S: Thermo Active Stabilizer-Spindle (Optional)

 Spindle deformation will be accurately controlled even during operations with frequent speed changes.

■ Eliminate waste with the Thermo-Friendly Concept

In addition to maintaining high dimensional accuracy when room temperature changes, Okuma's Thermo-Friendly Concept provides high dimensional accuracy during machine startup and machining restart.

To stabilize thermal deformation, warming-up time is shortened and the burden of dimensional correction during machining restart is reduced.

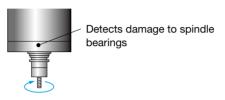
Machine startup

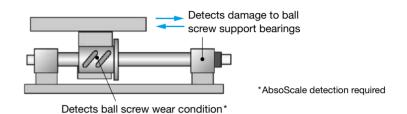
Machining restart

Room temp change

High dimensional stability

Al detects signs of failure


Al Machine Diagnosis Function (Optional)


Al Spindle Diagnosis Function

■ Detects damage to spindle bearings

Al Feed Axis Diagnosis Function

■ Detects damage to ball screw support bearings, and ball screw wear*

- AI (artificial intelligence) analyzes the diagnostics data detected from the spindle and feed axis "diagnosis operations," and performs machine condition monitoring.
- Since a "learned Al diagnostic model" can be installed in the OSP-P300A, networking with Okuma's Connect Plan enables a diagnosis of the "standalone machine," as well as a method to provide automatic updates of the model data.
- The Maintenance Monitor provides diagnosis notifications (default setting is once a month).
 Note: Periodic diagnosis is recommended.

Next-Generation Energy-Saving System

ECO suite

A suite of energy saving applications for machine tools

■ ECO Idling Stop Accuracy ensured, cooler off

Intelligent energy-saving function with the Thermo-Friendly Concept.

The machine itself determines whether or not cooling is needed and cooler idling is stopped with no loss to accuracy. Electricity consumption during non-machining time greatly reduced with "ECO Idling Stop", which shuts down each piece of auxiliary equipment not in use.

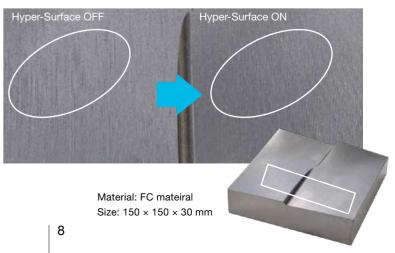
(Standard application on machines with Thermo-Active Stabilizer—Spindle)

■ ECO Power Monitor On-the-spot check of energy savings

Power is shown individually for spindle, feed axes, and auxiliaries on the OSP operation screen. The energy-saving benefits from auxiliary equipment stopped with ECO Idling Stop can be confirmed on the spot.

■ ECO Operation (Optional)

Intermittent/continuous operation of chip conveyor and mist collector during operation


Achieving high die/mold surface quality machining

Hyper-Surface (Optional)

Auto machining data compensation, easy and improved die/mold surface quality

Modifying CAM machining data is not required. Ridgelines and uneven surface edges are reduced, the machined surface quality is improved, and hand-polishing times are eliminated. In addition to the Sculptured-Surface Adaptive Acceleration Control featured in the previous Super-NURBS function, the new Hyper-Surface — while maintaining the required shape accuracy — automatically compensates for those edges and adjacent cutter path positioning errors caused by remnants of "disturbances" found in the CAM machining data.

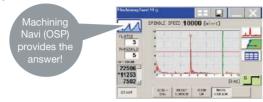
Automatically compensates for misalignment between adjacent cutter paths


Collision prevention

Collision Avoidance System (Optional)

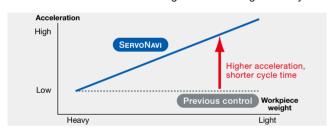
■ World's first

"Collision-Free Machine"


CAS prevents collisions in automatic or manual mode, providing risk-free protection for the machine and great confidence for the operator.

Searches for the best cutting conditions

- Machining Navi M-i changes automatically to optimum spindle speed
- Machining Navi M-gII+ displays several spindle speed possibilities


Achieves long term accuracy and surface quality

SERVONAVI AI (Automatic Identification)

■ Cycle time shortened with faster acceleration **Work Weight Auto Setting**

On table travel type machining centers, the table feed acceleration with the previous system was the same regardless of weight, such as workpieces and fixtures loaded on the table

Work Weight Auto Setting estimates the weight of the workpiece and fixture on the table and automatically sets servo parameters, including acceleration, to the optimum values. Cycle times are shortened with no changes to machining accuracy.

SERVONAVI SF (Surface Fine-tuning)

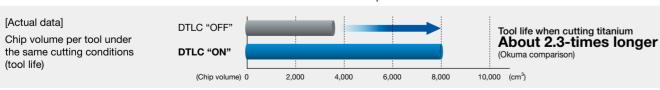
■ Maintains machining accuracy and surface quality **Reversal Spike Auto Adjustment**

Slide resistance changes with length of time machine tools are utilized, and discrepancies occur with the servo parameters that were the best when the machine was first installed. This may produce crease marks at motion reversals and affect machining accuracy (part surface quality).

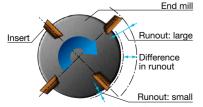
SERVONAVI'S Reversal Spike Auto Adjustment maintains machining accuracy by switching servo parameters to the optimum values matched to changes in slide resistance.

■ Contributes to longer machine life Vibration Auto Adjustment

When aging changes machine performance, noise, vibration, crease marks, or fish scales may appear.


Vibration Auto Adjustment can quickly eliminate noise and vibration even from machines with years of operation.

Dynamic Tool Load Control (Optional)


Prevents chipping, extends tool life

When machining of difficult-to-cut material, chipping from blade runout often occurs with insert-tipped end mills. To stabilize such machining, solid end mills with high tool costs have generally been used.

Dynamic Tool Load Control gives uniform cutting force with advanced synchronization of spindle phase and feed rate to control end mill chipping. This improves tool life and stabilizes machining. Switching from expensive solid tools also leads to reduced tool costs.

Runout of insert-tipped end mill

Gives uniform cutting force Insert-tipped end mill

Note: The above are actual examples. Your results may vary due to differences in specifications, tooling and cutting conditions.

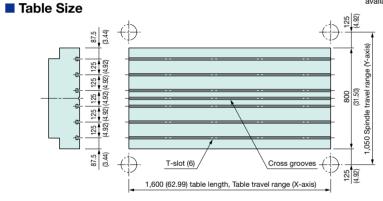
Machine Specifications

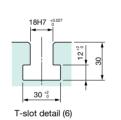
	Item		MB-	-80V			
			No. 40 spindle	No. 50 spindle			
Travels	X axis (table L/R)	mm (in)	1,600	(62.99)			
	Y axis (ram saddle front/back)	mm (in)	1,050	(41.34)			
	Z axis (spindlehead vertical) mm (ir		600 (2	23.62)			
	Table top to spindle nose	mm (in)	200 to 800 (7	7.87 to 31.50)			
Table	Table size	mm (in)	1,600 × 800 (6	62.99 × 31.50)			
	Floor to table top	mm (in)	900 (3	35.43)			
	Max load capacity	kg (lb)	2,500	(5,500)			
Spindle	Speed	min-1	15,000 [12,000, 20,000]	12,000			
	Speed ranges		Infinitely	variable			
	Tapered bore		7/24 taper No. 40 [HSK-A63]	7/24 taper No. 50			
	Bearing dia	mm (in)	ø70 (ø2.76) (12,000 min ⁻¹ spindle is ø90)	ø90 (ø3.54)			
Feed Rates	Rapid traverse	m/min	X·Y: 42	2, Z: 32			
	Cutting feed rate	mm/min	X·Y·Z:	32,000			
Motors	Spindle	kW (hp)	26/18.5 (35/25) [33/26 (43/35) , 30/22 (40/30)]	33/26 (43/35)			
	Feed axes	kW (hp)	X5.2 (7), Y·Z: 3.5 (4.7)				
Auto Tool Changer	Tool shank		MAS403 BT40 [HSK-A63]	MAS403 BT50			
	Pull stud		MA	S 2			
	Magazine capacity	tool	32 [4	8, 64]			
	Max tool dia (w/adjacent tool)	mm (in)	ø90 (ø3.54)	ø100 (ø3.94)			
	Max tool dia (w/o adjacent tool)	mm (in)	ø125 (ø4.92)	ø152 (ø5.98)			
	Max tool length	mm (in)	400 (*	15.75)			
	Max tool mass	kg (lb)	8 (17.6)	12 [15] (26.4 [33])			
	Max tool moment N-	m (ft-lbt)	7.8 (5.7)	15.3 [19.1] (11.2 [14.0])			
	Tool selection		Memory	random			
Machine	Height	mm (in)	3,320 (130.71)			
Size	Floor space	mm (in)	4,500 × 2,970 (1	77.17 × 116.93)			
	Mass	kg (lb)	16,750 (36,850)	17,000 (37,400)			

Standard Specifications

[]: Optional

No. 40 Spindle speed 15,000 min ⁻¹	26/18.5 kW [10 min/cont] *1	Chip air blower (blast)	Nozzles		
Rapid traverse	X·Y: 42 m/min, Z: 32 m/min	Spindle air blower (blast)			
Spindle/spindlehead cooler	Oil temperature controller	Foundation washers	14 pcs		
Ball screw cooling	X·Y·Z axis	(with jack bolts)			
Air cleaner (filter)	Regulator included	3-lamp status indicator	Type C (LED signal tower)		
Spindle oil-air lubricator			Red (alarm), yellow (end),		
Auto lube system (ALS)	Ball screw, guideway, magazine		green (running)		
ATC magazine	32 tools	Work lamp	LED lamps		
ATC magazine shutter			(installed on right and left sides)		
Tool unclamp package		Full enclosure shielding	With ceiling		
Coolant system	Tank 700 L (Effective 460 L)	Tapered bore cleaning bar			
	Pump motor 3.3/3.8 kW (50/60 Hz)	Hand tools			
Coolant nozzles	Adjustable type: 6 tools	Tool box			
In-machine chip discharge	Hinge-type chip conveyor	Numerical controller	OSP-P300MA		
Chip pan	64 L	Color LCD operation panel			
ATC air blower (blast)		Pulse handle			


Note: Fire prevention measures are necessary, as oil-based coolants may cause fire Never operate machine unattended.


^{*1:} For spindle tapered bore, 7/24 taper No. 40 (BT40, BIG-PLUS®, CAT40, DIN40) or HSK-A63 are available

Optional Specifications

No. 40 High-speed spindle 20,000 min ⁻¹ \(\triangle \)		30/22 kW [10 min/cont]*2	Oil mist unit	
No. 40 Powerful spindle 12,000 min ⁻¹	Δ	33/26 kW [10 min/cont]*2	Mist collector	
No. 50 Powerful spindle 12,000 min ⁻¹ \triangle		33/26 kW [10 min/cont]*3	Semi-dry machining	
Dual contact spindle △		HSK, BIG-PLUS®	Shower coolant	Mounted to crossrail and/or ceiling
ATC magazine △		48, 64 (chain type)	Workpiece wash gun	
		For 64 or more tools (matrix magazine)	Off-machine chip discharge \triangle	Lift-up chip conveyor:
Pull stud specs	Δ	MAS1, CAT, DIN, JIS		floor or drum filter type
Attachment preps		Accelerator attachment	Chip bucket △	
		Angle-head attachment	Auto tool length compensation ·	With touch sensor
		Oil-hole supplier	tool breakage detection	
AbsoScale		X-Y-Z axes	Auto zero offset· Auto gauging	With touch probe
Automatic pallet changer		2-pallet parallel shuttle APC (left side),	Collision Avoidance System	
		FMS	Machining Navi M-i, M-g□+	Cutting condition search
NC rotary table		Specify chuck, tailstock requirements,	TAS-S	Thermo Active Stabilizer—Spindle
		rotarty table type	TAS-C	Thermo Active Stabilizer—Construction
Installation specifications for the	:		Automatic door	
NC rotary table			Chemical anchors	
High-crossrail specs		+200 mm	△: Corresponding standard specification is	
Thru-spindle coolant *1		Specify 1.5 MPa or 7.0 MPa	ring, and through hole diameter)	nercial products have different end-face grinding,
		1	+0 F	40 (DT40 DIO DILLO® OAT40 DINAO)

Chip air blower (adapter)

*2. For spindle tapered bore, 7/24 taper No. 40 (BT40, BIG-PLUS®, CAT40, DIN40) or HSK-A63 are available.

*3. For spindle tapered bore, 7/24 taper No. 50 (BT50, BIG-PLUS®, CAT50, DIN50) are

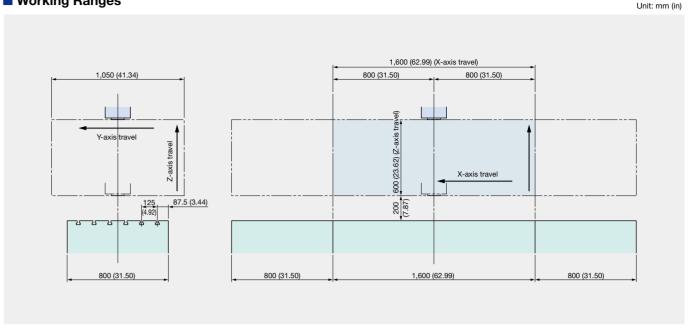
Unit: mm (in)

■ Recommended Chip Conveyors (Please contact an Okuma sales representative for details.)

 \bigcirc : Recommended \triangle : Recommended with conditions

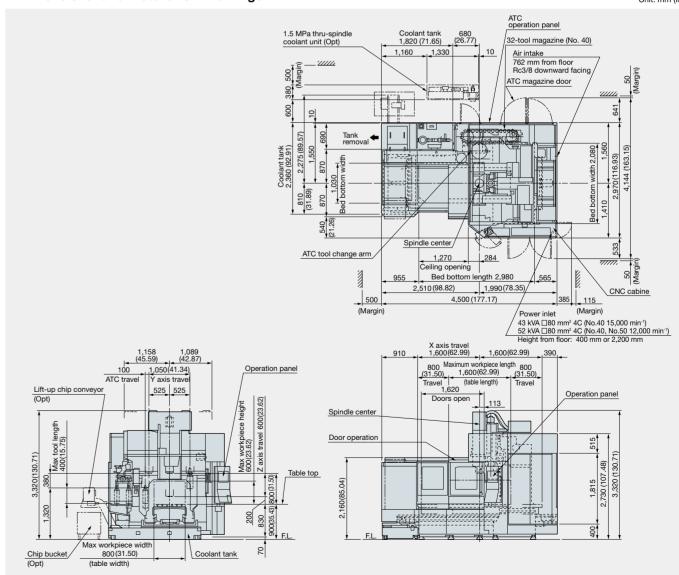
	Workpiece material	Steel	FC	Aluminum / Nonferrous	Mixed (general use)
Chip shape					
In-machine	Hinge (Standard)	0	0	0	0
	Hinge	0	_	_	△ (*4)
Off-machine	Scraper	_	O (Dry)	_	_
(Optional)	Scraper (with drum filter)	_	(Wet) with magnet	△ (*3)	<u> </u>
	Hinge + scraper (with drum filter)	△ (*1)	△ (Wet) (*2)	0	0

^{*1.} When there are many fine chips
*2. When chips are longer than 100 mm
*3. When chips are shorter than 100 mm
*4. When there are few fine chips


■ Off-machine lift-up chip conveyors

Туре	Hinge	Scraper	Scraper (with drum filter)	Hinge + scraper (with drum filter)
Shape				

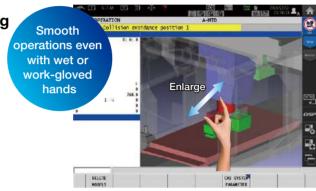
11


Note: The machine may need to be raised (platform) depending on the type of chip conveyor.

■ Working Ranges

■ Dimensional and Installation Drawings

Unit: mm (in)


OSP suite OSP-P300MA

With revamped operation and responsiveness ease of use for machine shops first!

Smart factories are using advanced digitization and networking (IIoT) in manufacturing to achieve enhanced productivity and added value. The OSP has evolved tremendously as a CNC suited to advanced intelligent technology. Okuma's new control uses the latest CPUs for a tremendous boost in operability, rendering performance, and processing speed. The OSP suite also features a full range of useful apps that could only come from a machine tool manufacturer, making smart manufacturing a reality.

Smooth, comfortable operation with the feeling of using a smart phone

Improved rendering performance and use of a multi-touch panel achieve intuitive graphical operation. Moving, enlarging, reducing, and rotating 3D models, as well as list views of tool data, programs, and other information can be accomplished through smooth, speedy operations with the same feel as using a smart phone. The screen display layout on the operation screen can also be changed to suit operator preferences and customized for the novice and/or veteran machinists.

Note: Collision Avoidance System (Optional) shown above.

"Just what we wanted."— Refreshed OSP suite apps

This became possible through the addition of Okuma's machining expertise based on requests we heard from real, machine-shop customers. The brain power packed into the CNC, built by a machine tool manufacturer, will "empower shop floor" management.

Routine inspection support Maintenance Monitor

The Maintenance Monitor displays items for inspections before starting daily operation and regular inspections and the rough estimate of inspection timing. Touching the [INFO] button displays the PDF instruction manual file of relevant maintenance items.

Increased productivity through visualization of motor power reserve

Spindle Output Monitor

Monitoring operating status even when away from the machine

E-mail Notification

Comment display for greater ease of use and faster work

Common Variable Monitor

Automatic saving of recorded alarms

Screen Capture

Easy programing without keying in code

Scheduled Program Editor

Get Connected, Get Started, and Get Innovative with Okuma "Monozukuri" Connect Plan

Connect, Visualize, Improve

Okuma's Connect Plan is a system that provides analytics for improved utilization by connecting machine tools and visual control of factory operation results and machining records. Simply connect the OSP and a PC and install Connect Plan on the PC to see the machine operation status from the shop floor, from an office, from anywhere. The Connect Plan is an ideal solution for customers trying to raise their machine utilization.

■ Standard Specifications

Basic Specs	Control	X, Y, Z, simultaneous 3 axis, spindle control (1 axis)						
	Position feedback	OSP full range absolute position feedback (zero point return not required)						
	Coordinate functions	achine coordinate system (1 set), work coordinate system (20 sets)						
	Min / Max command	±99999.999 mm, ±9999.999° 8-digit decimal, command unit: 0.001 mm, 0.01 mm, 1 mm (0.0001°, 0.001°, 1°)						
	Feed	Cutting feed override 0 to 200%, rapid traverse override 0 to 100%						
	Spindle control	Direct spindle speed commands override 30 to 300%, multi-point indexing						
	Tool compensation	No. of registered tools: Max 999 sets, tool length/radius compensation: 3 sets per tool						
	Display	15-inch color LCD + multi-touch panel operations						
	Self-diagnostics	Automatic diagnostics and display of program, operation, machine, and NC system faults						
Programming	Program capacity	Program storage capacity: 4 GB; operation buffer: 2 MB						
	Program operations	rogram management, editing, scheduled program, fixed cycle, G-/M-code macros, arithmetic, logic statements,						
		math functions, variables, branch commands, coordinate calculate, area machining, coordinate convert, programming help						
Operations	"suite apps"	Applications to graphically visualize and digitize information needed on the shop floor						
	"suite operation"	Highly reliable touch panel suited to shop floors. One-touch access to suite apps.						
	Easy Operation	"Single-mode operation" for a series of operations for a single screen						
		Easy-to-use operation panel supports complete machine control						
	Machine operations	MDI, manual (rapid traverse, manual cutting feed, pulse handle), load meter, operation help, alarm help, sequence return,						
		manual interrupt/auto return, pulse handle overlap, parameter I/O, PLC monitor, easy setting of cycle time reduction						
	MacMan	Machining management: machining results, machine utilization, fault data compile & report, external output						
Communications / Net	working	USB (2 ports), Ethernet						
High speed/accuracy s	specs	Hi-G Control, Hi-Cut Pro, pitch error compensation, SERVONAVI, Machining Time Shortening Function						
Energy-saving function	ECO suite	ECO Idling Stop *1, ECO Power Monitor *2						

- *1. Spindle cooler Idling Stop is used on TAS-S machines.
- *2. The power display shows estimated values. When precise electrical values are needed, select the wattmeter option

Optional Specifications

	Kit Specs*1	N	ML	3	BD.	Α	OT		Kit Specs*1	NN	ИL	3	D	Α	0
Item	Tut opoos	E	D	E	D	Е		5	Item	Е	D	Е	D	Е	Ī
nteractive functions									Gauging						
Advanced One-Touch								╗	Auto gauging Touch probe (G31)	Included in machin				ne	
(Real 3D simulation included)						•	_					sp	ecs		
Interactive MAP (I-MA	AP)								Auto zero offset Includes auto gauging	In	cluc	ded i	n ma	achi	ne
Programming Programming												sp	ecs		
Operation buffer (10 M	1B)								Tool breakage Touch sensor (G31)	Included in machin				ne	
Auto scheduled progra	am update								detection Includes auto tool offset			sp	ecs		_
G-/M-code macros									Gauging data printout File output						╄
Common variables	1,000 pcs								Manual gauging (w/o sensor)		•	•	•	•	Ľ
(Std: 200 pcs)	2,000 pcs								Interactive gauging (Touch-sensor, touch-probe required)					<u> </u>	L
Program branch; 2 set	S								External I/O communication						
Program notes (MSG)									RS-232C connector						╄
Coordinate system	100 sets	•		•		•		\neg	DNC-T3						퇶
selection	200 sets		•		•		•		DNC-B (RS-232C-Ethernet transducer used on OSP side)					_	1
(Std: 20 sets)	400 sets							\neg	DNC-DT						\perp
Helical cutting (within 3		•	•	•	•	•			DNC-C/Ethernet						L
3D circular interpolatio								╗	Additional USB (Additional 2 ports, Std: 2 ports)						
Synchronized Tapping	II	•	•	•	•	•			Automation / untended operation						
Arbitrary angle chamfering		•	•	•	•	•	_	-	Auto power shut-off M02 and END alarms		•				
Cylindrical side facing			Ť	Ť	Ť	Ť	Ť	٦	Work preps done → OFF		_	_	_	_	Ľ
Slope machining								\dashv	Warm-up (calendar timer)						
Tool grooving (flat-tool	free-shaped grooving)							\dashv	External program Button, rotary switch,						
Tool max rotational spe							+	\dashv	selection digital switch, BCD						
F1-digit feed	4 sets, 8 sets, parameter						+	\dashv	(2-digit, 4-digit)		_			_	ļ.
Programmable travel li		•						-	Cycle time reduction (Ignores certain commands)		•	•	•	•	1
Skip (G31)	iiiiio (GEE, GEO)	-		-	-	-	+	-	Robot, loader I/F						┸
Axis naming (G14)		_	+	+	+	+	+	\dashv	High-speed, high-accuracy						-
3D tool compensation		1	1	1	1		+	\dashv	AbsoScale detection X-Y-Z-axis						\perp
Tool wear compensation	on.	-	•	-	•	-		\exists	Hyper-Surface*3						
Drawing conversion		-	_		_		+	-	TAS-S (Thermo Active Stabilizer—Spindle)						
Drawing conversion	Programmable mirror image (G62)								TAS-C (Thermo Active Stabilizer—Construction)						
	Enlarge/reduce (G50, G51)		•					Н	ECO suite (energy saving functions)						
User task 2	1 1		_		_		-	4	ECO Operation						
Tape conversion*2	I/O variables (16 each)	-					+	\dashv	ECO Power Monitor On-machine wattmeter						
Monitoring		_							Other						
<u></u>		_							Control cabinet lamp (inside)						Г
Real 3D simulation	Caiadla accidad accidad			-	-	-	•	\rightarrow	Circuit breaker	•	•	•	•	•	
Simple load monitor	Spindle overload monitor	•	•	•	•	•	_	-	Sequence operation Sequence stop		•		•		
NC operation monitor	Hour meter, work counter	•	•	•	•	•	•	4	Upgraded sequence restart Mid-block return						T
Hour meters	Power, spindle, NC, cutting	_	_	_	_	_	+	4	Pulse handle 2 pts, 3 pts (standard 1 pt)						T
Operation end buzzer	With M02, M30, and END								External M code 4-point, 8-point						t
	commands	-	-	-	-	-	+	\dashv	Collision Avoidance System*3						t
Work counter	With M02 and M30 commands		-	-	-	-	+	4	Machining Navi M-i, M-gII+ (cutting condition search)						$^{+}$
MOP-TOOL	Adaptive control, overload monitor								One-Touch Spreadsheet						t
	1 1	-	-	-	-	-	+	\dashv	Block skip; 3 sets						t
Al Machine Diagnosis	Feed axes / Spindle								OSP-VPS (Virus Protection System)					\vdash	+
Function		_	-	-	-	_	+	4			. 1	105			_
Machining Status Logo			-	-	-	-	-	4	*1. NML: Normal, 3D: Real 3D simulation, AOT: Advanced One E: Economy, D: Deluxe	e-10	uch	IGF-	-IVI		
Cutting Status Monitor		_	_	_	_	_	_	Ц	*2. Technical consultation needed for specifications						
Tool life management	Hour meter, No. of workpieces								*3 There are limitations when Hyper-Surface and Collision Ad	wone	م c.				

*3. There are limitations when Hyper-Surface and Collision Advance System are used simultaneously.

OKUMA Corporation

Oguchi-cho, Niwa-gun, Aichi 480-0193, Japan TEL: +81-587-95-7825 FAX: +81-587-95-6074